Nodes of different colours represent the following:
Solid arrows point from a procedure to one which it calls. Dashed
arrows point from an interface to procedures which implement that interface.
This could include the module procedures in a generic interface or the
implementation in a submodule of an interface in a parent module.
Where possible, edges connecting nodes are
given different colours to make them easier to distinguish in
large graphs.
Source Code
subroutine wallawinlet(utan,dx,visc,tau)! this should be the same as wallaw in modboundary!!! This routine is just! copied to avoid circular dependenciesimplicit nonereal,intent(in)::utan,dx,viscreal,intent(out)::taureal const1,const2,const3,const4real tausub,taupowreal sub,dutan,utankr,utanabsreal aaa,bbbreal dxiparameter(aaa=8.3)parameter(bbb=0.1428571429)dxi=1./dxconst1=0.5*(1.-bbb)*aaa**((1.+bbb)/(1.-bbb))const2=(1.+bbb)/aaaconst3=aaa**(2./(1.-bbb))const4=2./(1.+bbb)utanabs=abs(utan)utankr=0.5*visc*dxi*const3dutan=utankr-utanabssub=max(sign(1.,dutan),0.)tausub=2.*visc*utanabs*dxi! taupow3 = const1 * (visc * dxi)**(1.+bbb) + (const2 * (visc *! dxi)**bbb) * utanabstaupow=(const1*(visc*dxi)**(1.+bbb)+(const2*(visc*dxi)**bbb)*utanabs)**const4! if (taupow3<=0) then! write(6,*) 'taupow3 <=0!!!'! end iftau=sub*tausub+(1.-sub)*taupowtau=sign(tau,utan)! give tau the same sign as utanreturn end subroutine wallawinlet