wfuno Subroutine

subroutine wfuno(hi, hj, hk, iout1, iout2, iot, iomomflux, iotflux, iocth, obcTfluxA, utang1, utang2, Tcell, Twall, z0, z0h, n, ind, wforient)

Uses

  • proc~~wfuno~~UsesGraph proc~wfuno wfuno module~initfac initfac proc~wfuno->module~initfac module~modglobal modglobal proc~wfuno->module~modglobal module~modibmdata modibmdata proc~wfuno->module~modibmdata module~modmpi modmpi proc~wfuno->module~modmpi module~modsubgriddata modsubgriddata proc~wfuno->module~modsubgriddata module~initfac->module~modglobal module~initfac->module~modmpi mpi mpi module~initfac->mpi netcdf netcdf module~initfac->netcdf module~modmpi->mpi

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: hi
integer, intent(in) :: hj
integer, intent(in) :: hk
real, intent(inout) :: iout1(ib-hi:ie+hi,jb-hj:je+hj,kb:ke+hk)
real, intent(inout) :: iout2(ib-hi:ie+hi,jb-hj:je+hj,kb:ke+hk)
real, intent(inout) :: iot(ib-hi:ie+hi,jb-hj:je+hj,kb:ke+hk)
real, intent(inout) :: iomomflux(ib-hi:ie+hi,jb-hj:je+hj,kb-hk:ke+hk)
real, intent(inout) :: iotflux(ib-hi:ie+hi,jb-hj:je+hj,kb-hk:ke+hk)
real, intent(inout) :: iocth(ib-hi:ie+hi,jb-hj:je+hj,kb-hk:ke+hk)
real, intent(out) :: obcTfluxA
real, intent(in) :: utang1(ib-hi:ie+hi,jb-hj:je+hj,kb-hk:ke+hk)
real, intent(in) :: utang2(ib-hi:ie+hi,jb-hj:je+hj,kb-hk:ke+hk)
real, intent(in) :: Tcell(ib-hi:ie+hi,jb-hj:je+hj,kb-hk:ke+hk)
real, intent(in) :: Twall
real, intent(in) :: z0
real, intent(in) :: z0h
integer, intent(in) :: n
integer, intent(in) :: ind
integer, intent(in) :: wforient

Calls

proc~~wfuno~~CallsGraph proc~wfuno wfuno unoh unoh proc~wfuno->unoh

Source Code

SUBROUTINE wfuno(hi,hj,hk,iout1,iout2,iot,iomomflux,iotflux,iocth,obcTfluxA,utang1,utang2,Tcell,Twall,z0,z0h,n,ind,wforient)
   !wfuno
   !calculating wall function for momentum and scalars following Cai2012&Uno1995, extension of Louis 1979 method to rough walls
   !fluxes in m2/s2 and Km/s
   USE modglobal, ONLY : dzf,dzfi,dzh2i,dzhi,dzhiq,dy,dyi,dy2i,dyi5,dxf,dxh,dxfi,dxhi,dxh2i,ib,ie,jb,je,kb,ke,fkar,grav,jmax,rk3step,kmax,jge,jgb
   USE modsubgriddata, ONLY:ekh, ekm
   USE modmpi, ONLY:myid
   USE initfac, ONLY:block
   USE modibmdata
   REAL, EXTERNAL :: unom
   INTEGER i, j, k, jl, ju, kl, ku, il, iu, km, im, jm, ip, jp, kp
   REAL :: Ribl0 = 0. !initial guess of Ribl based on Ts

   REAL :: bcTflux = 0. !temp storage for temperature flux
   REAL :: bcmomflux = 0. !temp storage for momentum flux
   REAL :: ctm = 0. !momentum transfer coefficient
   REAL :: cth = 0. !heat transfer coefficient
   REAL :: dummy = 0. !for debugging
   REAL :: delta = 0. !distance from wall
   REAL :: logdz = 0. !log(delta/z0)
   REAL :: logdzh = 0. !log(delta/z0h)
   REAL :: logzh = 0. !log(z0/z0h)
   REAL :: sqdz = 0. !sqrt(delta/z0)
   REAL :: utang1Int !Interpolated 1st tangential velocity component needed for stability calculation (to T location)
   REAL :: utang2Int !Interpolated 2nd tangential velocity component needed for stability calculation (to T location)
   REAL :: utangInt !Interpolated absolute tangential velocity
   REAL :: dT !Temperature difference between wall and cell
   REAL :: fkar2 !fkar^2, von Karman constant squared
   REAL :: emmo = 0., epmo = 0., epom = 0., emom = 0., eopm = 0., eomm = 0., empo = 0.
   REAL :: umin = 0.0001 !m^2/s^2

   INTEGER, INTENT(in) :: hi !<size of halo in i
   INTEGER, INTENT(in) :: hj !<size of halo in j
   INTEGER, INTENT(in) :: hk !<size of halo in k
   REAL, INTENT(out)   :: obcTfluxA !temperature flux of entire wall facet (double sum over indeces) [Km/s]
   REAL, INTENT(inout) :: iout1(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk) !updated prognostic tangential velocity (component1)
   REAL, INTENT(inout) :: iout2(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk) !updated prognostic tangential velocity (component2)
   REAL, INTENT(inout) :: iot(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk) !updated prognostic temperature
   REAL, INTENT(inout) :: iomomflux(ib - hi:ie + hi, jb - hj:je + hj, kb-hk:ke + hk) !a field to save the momentum flux
   REAL, INTENT(inout) :: iotflux(ib - hi:ie + hi, jb - hj:je + hj, kb-hk:ke + hk) !a field to save the heat flux
   REAL, INTENT(inout) :: iocth(ib - hi:ie + hi, jb - hj:je + hj, kb-hk:ke + hk) !heat transfer coefficient, used to calculate moisture flux
   REAL, INTENT(in)    :: Tcell(ib - hi:ie + hi, jb - hj:je + hj, kb - hk:ke + hk) !Temperature of fluid cell
   REAL, INTENT(in)    :: Twall !Temperature of surfaces !SINCE EVERY WALL HAS PRECISELY ONE TEMPERATURE (at the outside). CAREFUL IF THIS EVER CHANGES (i.e. multiple EB facets per wall)
   REAL, INTENT(in)    :: z0
   REAL, INTENT(in)    :: z0h
   REAL, INTENT(in)    :: utang1(ib - hi:ie + hi, jb - hj:je + hj, kb - hk:ke + hk) !tangential velocity field
   REAL, INTENT(in)    :: utang2(ib - hi:ie + hi, jb - hj:je + hj, kb - hk:ke + hk) !second tangential velocity field
   INTEGER, INTENT(in) :: n ! number of the block, used to get i,j,k-indeces
   INTEGER, INTENT(in) :: ind ! in case of y-wall (case 3x & 4x) "ind" is used for j-index, otherwise this is irrelevant
   INTEGER, INTENT(in) :: wforient !orientation of the facet see below:
   !frist digit, orientation of wall, determines iteration indices
   !second digit, if for momentum or for scalar (necessary because of staggered grid -> which variable to interpolate)
   !xlow=1,xup=2,yup=3,ylow=4,z=5
   !momentum=1,scalar=2
   fkar2 = fkar**2
   obcTfluxA = 0.
   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!CASES!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!CASES FOR SCALARS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
   SELECT CASE (wforient)

   !!!!!!!!!!!!!!!SPECIAL CASES FOR THE SURFACE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
   !can actually be made redundant and just be replaced by standard horizontal case (doesn't really matter though)
   ! SO: This code is essentially unchanged from uDALES v1, and should probably be moved out of this file in a later release.
   CASE (91) !surface momentum flux

      k = kb !
      km = k - 1 !
      il = ib
      iu = ie
      jl = jb
      ju = je


      delta = 0.5*dzf(k) !might need attention on streched grids! as well as the dzfi when updating up
      logdz = LOG(delta/z0)
      logdzh = LOG(delta/z0h)
      logzh = LOG(z0/z0h)
      sqdz = SQRT(delta/z0)

      DO j = jl, ju !u component
         DO i = il, iu
            utang1Int = utang1(i, j, k)
            utang2Int = (utang2(i, j, k) + utang2(i - 1, j, k) + utang2(i, j + 1, k) + utang2(i - 1, j + 1, k))*0.25
            utangInt = max(umin, (utang1Int**2 + utang2Int**2))
            dT = ((Tcell(i, j, k) + Tcell(i - 1, j, k)) - (Twall + Twall))*0.5
            Ribl0 = grav*delta*dT*2/((Twall + Twall)*utangInt) !Eq. 6, guess initial Ri
            ctm = unom(logdz, logdzh, logzh, sqdz, utangInt, dT, Ribl0, fkar2) !save result and update field
            !dummy = (utang1Int**2)*ctm
            dummy = abs(utang1Int)*sqrt(utangInt)*ctm
            bcmomflux = SIGN(dummy, utang1Int) !bcmomflux=u_star^2
            iomomflux(i, j, k) = iomomflux(i, j, k) + bcmomflux*dzfi(k)
            emom = (dzf(km)*(ekm(i, j, k)*dxf(i - 1) + ekm(i - 1, j, k)*dxf(i)) + & ! dx is non-equidistant
                    dzf(k)*(ekm(i, j, km)*dxf(i - 1) + ekm(i - 1, j, km)*dxf(i)))*dxhi(i)*dzhiq(k)
            iout1(i, j, k) = iout1(i, j, k) + (utang1(i, j, k) - utang1(i, j, km))*emom*dzhi(k)*dzfi(k) - bcmomflux*dzfi(k) !
         END DO
      END DO

      DO j = jl, ju
         DO i = il, iu
            utang1Int = (utang1(i, j, k) + utang1(i, j - 1, k) + utang1(i + 1, j - 1, k) + utang1(i + 1, j, k))*0.25
            utang2Int = utang2(i, j, k)
            utangInt = max(umin, (utang1Int**2 + utang2Int**2))
            dT = ((Tcell(i, j, k) + Tcell(i, j - 1, k)) - (Twall + Twall))*0.5
            Ribl0 = grav*delta*dT*2/((Twall + Twall)*utangInt) !Eq. 6, guess initial Ri
            ctm = unom(logdz, logdzh, logzh, sqdz, utangInt, dT, Ribl0, fkar2) !save result and update field
            !dummy = (utang2Int**2)*ctm !save result and update field
            dummy = abs(utang2Int)*sqrt(utangInt)*ctm
            bcmomflux = SIGN(dummy, utang2Int)
            iomomflux(i, j, k) = iomomflux(i, j, k) + bcmomflux*dzfi(k)
            eomm = (dzf(km)*(ekm(i, j, k) + ekm(i, j - 1, k)) + dzf(k)*(ekm(i, j, km) + ekm(i, j - 1, km)))*dzhiq(k)
            iout2(i, j, k) = iout2(i, j, k) + (utang2(i, j, k) - utang2(i, j, km))*eomm*dzhi(k)*dzfi(k) - bcmomflux*dzfi(k) !
         END DO
      END DO

   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
   CASE (92) !surface temperature flux
      k = kb !block location
      ku = k !shear velocity location
      il = ib
      iu = ie
      jl = jb
      ju = je

      delta = dzf(k)*0.5
      logdz = LOG(delta/z0)
      logdzh = LOG(delta/z0h)
      logzh = LOG(z0/z0h)
      sqdz = SQRT(delta/z0)

      DO j = jl, ju
         DO i = il, iu
            utang1Int = (utang1(i, j, ku) + utang1(i + 1, j, ku))*0.5
            utang2Int = (utang2(i, j, ku) + utang2(i, j + 1, ku))*0.5
            utangInt = max(umin, (utang1Int**2 + utang2Int**2))
            dT = (Tcell(i, j, ku) - Twall)
            Ribl0 = grav*delta*dT/(Twall*utangInt) !
            call unoh(bcTflux, cth, logdz, logdzh, logzh, sqdz, utangInt, dT, Ribl0, fkar2)
            obcTfluxA = obcTfluxA + bcTflux
            iotflux(i, j, k) = iotflux(i, j, k) + bcTflux*dzfi(k)
            iot(i, j, ku) = iot(i, j, ku) + &
                            0.5*(dzf(k - 1)*ekh(i, j, k) + dzf(k)*ekh(i, j, k - 1))* & ! zero flux
                            (Tcell(i, j, k) - Tcell(i, j, k - 1))*dzh2i(ku)*dzfi(ku) &
                            - bcTflux*dzfi(k)
         END DO
      END DO

   END SELECT

END SUBROUTINE wfuno