advec_kappa.f90 Source File


This file depends on

sourcefile~~advec_kappa.f90~~EfferentGraph sourcefile~advec_kappa.f90 advec_kappa.f90 sourcefile~modfields.f90 modfields.f90 sourcefile~advec_kappa.f90->sourcefile~modfields.f90 sourcefile~modglobal.f90 modglobal.f90 sourcefile~advec_kappa.f90->sourcefile~modglobal.f90 sourcefile~modibmdata.f90 modibmdata.f90 sourcefile~advec_kappa.f90->sourcefile~modibmdata.f90 sourcefile~modfields.f90->sourcefile~modglobal.f90 sourcefile~modmpi.f90 modmpi.f90 sourcefile~modglobal.f90->sourcefile~modmpi.f90

Source Code

!> \file advec_kappa.f90
!!  Does advection with a kappa limiter scheme.
!! \par Revision list
!! \par Authors
!! \see Hundsdorfer et al 1995
!!
!! For advection of scalars that need to be strictly monotone (for example chemically reacting species)
!! the kappa scheme has been implemented:
!! \latexonly
!! \begin{eqnarray}
!!  F_{i-\frac{1}{2}}^{\kappa} &=& \fav{u}_{i-\frac{1}{2}}
!!  \left[\phi_{i-1}+\frac{1}{2}\kappa_{i-\frac{1}{2}}\left(\phi_{i-1}-\phi_{i-2}\right)\right],
!! \end{eqnarray}
!! in case $\fav{u}>0$. $\kappa_{i-\smfrac{1}{2}}$ serves as a switch between higher order advection and
!! first order upwind in case of strong upwind gradients of $\phi$.
!! \endlatexonly
!! This makes the scheme monotone, but also rather dissipative.
!!
!  This file is part of DALES.
!
! DALES is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 3 of the License, or
! (at your option) any later version.
!
! DALES is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program.  If not, see <http://www.gnu.org/licenses/>.
!
!  Copyright 1993-2009 Delft University of Technology, Wageningen University, Utrecht University, KNMI
!

!> Advection at cell center
  subroutine advecc_kappa(hi, hj, hk, var, varp)

!  use modglobal, only : i1,i2,ih,j1,j2,jh,k1,kmax,dxi,dyi,dzi
     use modglobal, only:ib, ie, ihc, jb, je, jhc, kb, ke, khc, dxhci, dyi, dzhci, dxfc, dzfc, dxfci, dzfci, libm
     use modibmdata, only:nxwallsnorm, nywallsnorm, nzwallsnorm, xwallsnorm, &
        ywallsnorm, zwallsnorm, nywallsp, nywallsm, ywallsp, ywallsm
     use modfields, only:u0, v0, w0
     implicit none
     real, external :: rlim
     integer, intent(in) :: hi !< size of halo in i
     integer, intent(in) :: hj !< size of halo in j
     integer, intent(in) :: hk !< size of halo in k
     real, dimension(ib - hi:ie + hi, jb - hj:je + hj, kb - hk:ke + hk), intent(in)  :: var !< Input: the cell centered field
     real, dimension(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk), intent(inout) :: varp !< Output: the tendency
     real, dimension(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk)      ::  duml ! 3d dummy variable: lower cell side
     real, dimension(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk)      ::  dumu ! 3d dummy variable: upper cell side

     integer i, j, k, il, iu, jl, ju, kl, ku, n
     real :: cf, d1, d2

     dumu(:, :, :) = 0.
     duml(:, :, :) = 0.
! -d(uc)/dx (stretched grid)
     do k = kb, ke
        do j = jb, je
           do i = ib, ie + 1
              if (u0(i, j, k) > 0) then
                 d1 = (var(i - 1, j, k) - var(i - 2, j, k))*dxhci(i - 1)
                 d2 = (var(i, j, k) - var(i - 1, j, k))*dxhci(i)
                 cf = var(i - 1, j, k)
              else
                 d1 = (var(i, j, k) - var(i + 1, j, k))*dxhci(i + 1)
                 d2 = (var(i - 1, j, k) - var(i, j, k))*dxhci(i)
                 cf = var(i, j, k)
              end if
              cf = cf + dxfc(i)*rlim(d1, d2)
              dumu(i - 1, j, k) = -cf*u0(i, j, k)*dxfci(i - 1) !swapped the -1s here !tg3315 !now also swapped the signs...
              duml(i, j, k) = cf*u0(i, j, k)*dxfci(i)
           end do
        end do
     end do

  varp(:,:,:) = varp(:,:,:) + dumu(:,:,:)+duml(:,:,:)

  dumu(:,:,:) = 0.
  duml(:,:,:) = 0.
! -d(vc)/dy (no stretched grid)
     do k = kb, ke
        do j = jb, je + 1
           do i = ib, ie
              if (v0(i, j, k) > 0) then
                 d1 = var(i, j - 1, k) - var(i, j - 2, k)
                 d2 = var(i, j, k) - var(i, j - 1, k)
                 cf = var(i, j - 1, k)
              else
                 d1 = var(i, j, k) - var(i, j + 1, k)
                 d2 = var(i, j - 1, k) - var(i, j, k)
                 cf = var(i, j, k)
              end if
              cf = cf + rlim(d1, d2)
              duml(i, j, k) = cf*v0(i, j, k)*dyi !tg3315
              dumu(i, j - 1, k) = -cf*v0(i, j, k)*dyi
           end do
        end do
     end do

  varp(:,:,:) = varp(:,:,:) + dumu(:,:,:)+duml(:,:,:)

  dumu(:,:,:) = 0.
  duml(:,:,:) = 0.
! -d(wc)/dz (stretched grid)
!  do k=kb,ke+1
     do k = kb + 1, ke + 1
        do j = jb, je
           do i = ib, ie
              if (w0(i, j, k) > 0) then
                 d1 = (var(i, j, k - 1) - var(i, j, k - 2))*dzhci(k - 1)
                 d2 = (var(i, j, k) - var(i, j, k - 1))*dzhci(k)
                 cf = var(i, j, k - 1)
              else
                 d1 = (var(i, j, k) - var(i, j, k + 1))*dzhci(k + 1)
                 d2 = (var(i, j, k - 1) - var(i, j, k))*dzhci(k)
                 cf = var(i, j, k)
              end if
              cf = cf + dzfc(k)*rlim(d1, d2)
              duml(i, j, k) = cf*w0(i, j, k)*dzfci(k) !tg3315 swapped
              dumu(i, j, k - 1) = -cf*w0(i, j, k)*dzfci(k - 1)
           end do
        end do
     end do

     varp(:,:,:) = varp(:,:,:) + dumu(:,:,:)+duml(:,:,:)

     return
  end subroutine advecc_kappa

!> Determination of the limiter function
  real function rlim(d1, d2)
     use modglobal, only:eps1
     implicit none
     real, intent(in) :: d1 !< Scalar flux at 1.5 cells upwind
     real, intent(in) :: d2 !< Scalar flux at 0.5 cells upwind

     real ri, phir

     ri = (d2 + eps1)/(d1 + eps1)
     phir = max(0., min(2.*ri, min(1./3.+2./3.*ri, 2.)))
     rlim = 0.5*phir*d1
  end function rlim