! This file is part of uDALES. ! ! This program is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! This program is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program. If not, see <http://www.gnu.org/licenses/>. ! ! Copyright 2006-2021 the uDALES Team. ! SUBROUTINE wfmneutral(hi,hj,hk,iout1,iout2,iomomflux,utang1,utang2,z0,n,ind,wforient) !wfmneutral !wf for momentum under neutral conditions !calculating wall function for momentum assuming neutral conditions !follow approach in wfuno !fluxes in m2/s2 USE modglobal, ONLY : dzf,dzfi,dzh2i,dzhi,dzhiq,dy,dyi,dy2i,dyi5,dxf,dxh,dxfi,dxhi,dxh2i,ib,ie,jb,je,kb,ke,fkar,jmax,rk3step,kmax,jge,jgb USE modsubgriddata, ONLY:ekh, ekm USE modmpi, ONLY:myid USE initfac, ONLY:block USE modibmdata INTEGER i, j, k, jl, ju, kl, ku, il, iu, km, im, jm, ip, jp, kp REAL :: bcmomflux = 0. !temp storage for momentum flux REAL :: ctm = 0. !momentum transfer coefficient REAL :: dummy = 0. !for debugging REAL :: delta = 0. !distance from wall REAL :: logdz2 = 0. !log(delta/z0)**2 REAL :: utang1Int !Interpolated 1st tangential velocity component needed for stability calculation (to T location) REAL :: utang2Int !Interpolated 2nd tangential velocity component needed for stability calculation (to T location) REAL :: fkar2 !fkar^2, von Karman constant squared REAL :: emmo = 0., epmo = 0., epom = 0., emom = 0., eopm = 0., eomm = 0., empo = 0. REAL :: umin = 0.0001 !m^2/s^2 INTEGER, INTENT(in) :: hi !<size of halo in i INTEGER, INTENT(in) :: hj !<size of halo in j INTEGER, INTENT(in) :: hk !<size of halo in k REAL, INTENT(inout) :: iout1(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk) !updated prognostic tangential velocity (component1) REAL, INTENT(inout) :: iout2(ib - hi:ie + hi, jb - hj:je + hj, kb:ke + hk) !updated prognostic tangential velocity (component2) REAL, INTENT(inout) :: iomomflux(ib - hi:ie + hi, jb - hj:je + hj, kb-hk:ke + hk) !a field to save the momentum flux REAL, INTENT(in) :: z0 REAL, INTENT(in) :: utang1(ib - hi:ie + hi, jb - hj:je + hj, kb - hk:ke + hk) !tangential velocity field REAL, INTENT(in) :: utang2(ib - hi:ie + hi, jb - hj:je + hj, kb - hk:ke + hk) !second tangential velocity field INTEGER, INTENT(in) :: n ! number of the block, used to get i,j,k-indeces INTEGER, INTENT(in) :: ind ! in case of y-wall (case 3x & 4x) "ind" is used for j-index, otherwise this is irrelevant INTEGER, INTENT(in) :: wforient !orientation of the facet see below: !frist digit, orientation of wall, determines iteration indices !second digit, if for momentum or for scalar (necessary because of staggered grid -> which variable to interpolate) !xlow=1,xup=2,yup=3,ylow=4,z=5 !momentum=1 fkar2 = fkar**2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!CASES!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!CASES FOR MOMENTUM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SELECT CASE (wforient) !!!!!!!!!!!!!!!SPECIAL CASES FOR THE SURFACE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !can actually be made redundant and just be replaced by standard horizontal case (doesn't really matter though) ! SO: This code is essentially unchanged from uDALES v1, and should probably be moved out of this file in a later release. CASE (91) !surface momentum flux k = kb ! km = k - 1 ! il = ib iu = ie jl = jb ju = je delta = 0.5*dzf(k) !might need attention on streched grids! as well as the dzfi when updating up logdz2 = LOG(delta/z0)**2 DO j = jl, ju !u component DO i = il, iu utang1Int = utang1(i, j, k) utang2Int = (utang2(i, j, k) + utang2(i - 1, j, k) + utang2(i, j + 1, k) + utang2(i - 1, j + 1, k))*0.25 utangInt = max(umin, (utang1Int**2 + utang2Int**2)) ctm = fkar2/(logdz2) !dummy = (utang1Int**2)*ctm dummy = abs(utang1Int)*sqrt(utangInt)*ctm bcmomflux = SIGN(dummy, utang1Int) iomomflux(i, j, k) = iomomflux(i, j, k) + bcmomflux*dzfi(k) emom = (dzf(km)*(ekm(i, j, k)*dxf(i - 1) + ekm(i - 1, j, k)*dxf(i)) + & ! dx is non-equidistant dzf(k)*(ekm(i, j, km)*dxf(i - 1) + ekm(i - 1, j, km)*dxf(i)))*dxhi(i)*dzhiq(k) iout1(i, j, k) = iout1(i, j, k) + (utang1(i, j, k) - utang1(i, j, km))*emom*dzhi(k)*dzfi(k) - bcmomflux*dzfi(k) ! END DO END DO DO j = jl, ju !v component DO i = il, iu utang1Int = (utang1(i, j, k) + utang1(i, j - 1, k) + utang1(i + 1, j - 1, k) + utang1(i + 1, j, k))*0.25 utang2Int = utang2(i, j, k) utangInt = max(umin, (utang1Int**2 + utang2Int**2)) ctm = fkar2/(logdz2) !dummy = (utang2Int**2)*ctm dummy = abs(utang2Int)*sqrt(utangInt)*ctm bcmomflux = SIGN(dummy, utang2Int) iomomflux(i, j, k) = iomomflux(i, j, k) + bcmomflux*dzfi(k) eomm = (dzf(km)*(ekm(i, j, k) + ekm(i, j - 1, k)) + dzf(k)*(ekm(i, j, km) + ekm(i, j - 1, km)))*dzhiq(k) iout2(i, j, k) = iout2(i, j, k) + (utang2(i, j, k) - utang2(i, j, km))*eomm*dzhi(k)*dzfi(k) - bcmomflux*dzfi(k) ! END DO END DO END SELECT END SUBROUTINE wfmneutral